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CLIMATE PREDICTION FRAMEWORK
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Presenter
Presentation Notes
Observation and prediction are two basic key elements for the success of climate services. Based on the climate prediction framework, we need to develop the seamless climate services from weeks to century scales. Corresponding products could be used for water management, disaster risk reduction, energy, and agriculture etc.



[ITM Ensemble Prediction System
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RMSE and spread of MISO indices (1ITM Research Report No. RR-128)
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Considerable improvement in MME is contributed from the increased spread,
which overcomes the under-dispersive nature of the individual models in EPS.

Abhilash, Sahai et al. 2015, JAMC; BAMS




Comparison of ITM-ERPS with ECMWF
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ECMF MME
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Issues with extended Range

Seasonal Mean .

Low Frequency

10-80 Day == Synoptic Scale

Cascade of Error in both directions determines the extended range predictability



Mean Back Ground-MISO
and Synoptic Scale
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Association between droughts and very long breaks (VLB)

List of drought years (below 10% of

Drought .Long_breaks Drought Years t.hat its long period average) during the
Years identified from co-occurred with .
IMD rainfall data EINino (E) / No period 1351-2004
EINino (NE)
2-15 Aug E e VLBs are identified when the
2-12 Jul NE standardized rainfall anomalies,
22 Aug-5 Sep E averaged over the Indian core
12 Jul-4 Aug E region is below -1.0 for a
26 Aug-8 Sep NE duration of more than 10 days.
13-29 Aug NE * It may be noted that 85% of ISM
27 Jun-8 Jul E droughts during this period are
- - associated with at least one VLB.
23 Aug-8 Sep NE e Hence VLBs in the monsoon are
16-26 Jul E responsible for ISM droughts.
2-31 Jul E
26 Aug-5 Sep E

® O “
A A

Joseph, Sahai et al., 2009, ClimDyn —




Modulation of monsoon ISOs by ENSO

No. of days per events
at each SOM node
(El-Nino; La Nina)

Correlation of the cumulative rainfall
anomalies associated with the days clustered
at each SOM node with ENSO Index

Method-1* Break 12.95) 6.27 -0.53
_—
Active 6.67:(12.07 -0.35
T
Method-2* Break 11.87:)7.84 -0.38
Active 9.55; 8.65) -0.07

*With ENSO effect on seasonal mean

#*Without ENSO effect on seasonal mean

Particular MISO phases are preferred during ENSO years, that is, the canonical break
phase is preferred more in the El Nino years and the typical active phase is preferred
during La Nina years.

Interestingly, if the ENSO effect on seasonal mean is removed, the preference for the
break node remains relatively unchanged; whereas, the preference reduces/vanishes for
the active node.

The results indicate that the El Nino—break relationship is almost independent of the
ENSO-monsoon relationship on seasonal scale whereas the La Nifna—active association
seems to be interwoven with the seasonal relationship.

Joseph, Sahai et al., 2011, JGR




Asymmetry in MISO during Extreme Monsoon

Frequency and duration of active/break spells
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Long active spells (>5 days) 2 SM (~47%)
Short active spells > WM (~73%)
Prolonged break spells > WM (65%)

Sharmila, Sahai et al., 2014, 1.J.Clim

Time-latitude diagram
Active composite
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Potential Predictability of MISO during Extreme Monsoon

Estimated Observed Potential Predictability of Active/Break Spell Transitions

Potential Predictability of Active/Break Cycle over Central India

Observation (Rainfall)
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The anomalously high (low) background
instability could reduce (enhance) the
predictability limit through modulating the
growth of error considerably during phase
transitions of SM (WM ) years.

Sahai et al., 2017, Nat. Haz
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Relative Importance of Synoptic Scale and MISO and
its representation in prediction 2015 Monsoon
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Fig.6 Bivariate correlation and RMSE of predicted and observed
MISO indices during 2015

Abhilash et al., 2018 Clim. Dyn
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Observation

* The case study of 2015 reveals that the scale
interaction can play a dominant role in
determining the long range predictability.

* Seasonal mean background as well as
teleconnection patterns also determines the
frequency and duration of active break spells



Example of Extended Range Forecast of Synoptic
events when large scale is better Captured

e Uttarakhand extreme event
e Mount Abu extreme event
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Extended range prediction of Uttarakhand rainfall event by

(a) CFS126 and (b) CFS382 from 05 June initial condition.
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The heavy amount of rainfall
(*110mm) over Uttarakhand was
predicted somewhat reasonably
(*70mm) by CFS382; however, the
amount (~30-35mm) is
underestimated by CFS126
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Evolution of Potential Vorticity (PV; x107 s1)
anomalies at 700 hPa and mean sea level pressure

The development and northwestward
movement of the low pressure system
in BoB is predicted reasonably well by
both CFS126 and CFS382, with CFS382
performing slightly better.
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Mount Abu, 26 July 2017

Mount Abu reportedly received the heaviest rainfall in over 300 years in the last 24
hours. (770 mm) in 24 hours)

19



ERF forecast —1Cs 19, 12 and 05 July, 2017

Rainfall Anomaly (mm/day) for the week: 20-286Jul 2017

Observation

MME, IC=0705
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Dynamical Downscaling

Weather Research and Forecasting-Advanced Research
WRF version 4.0 (Skamarock et al., 2019) is used to
downscale the forecast outputs from the ERP system.

The ERP output variables such as winds, relative humidity,
temperature and surface variables like sea-surface
temperature, mean sea level pressure, surface pressure,
soil-moisture and soil-temperature are bias corrected at
all vertical levels before giving them as boundary
conditions to WRF.

i



Vertical Profiles of Cyclones at Mature Stage
OBS Raw-ERP Downscaled ERP

(a) SCS Mora 29May2017 (raw-ERP IC:0524) (b) 29May2017 (dwn-ERP IC:0524)
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Vertical Profiles of Cyclones at Mature Stage
OBS GFS 12km Downscaled ERP
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SOM based Bias correction and Downscaling: Application to ERP of Mahanadi flood in September 2011
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Conclusion

* Extended range prediction implies the prediction
of the low-frequency oscillations.

* Predictability of such low-frequency oscillations
are limited by synoptic scale systems during the
monsoon season

e However, under certain instances when the
synoptic scale systems develops over a systematic
development of monsoon mean low frequency
background, operational predictability of such
synoptic scale system is improved.
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