# Monsoon teleconnections and impact of correcting tropical diabatic heating





Erik Swenson & David Straus 12/4/2019



#### **Outline**

- Model and re-forecast experiments
- What happens to SST in re-forecasts when we intervene with atmospheric heating above it?
- Improvement in representation of heating related to ENSO and EQWIN
- Impact on model representation of monsoon teleconnections
- Prediction of monsoon circulation

#### **CFSv2** re-forecasts

- NCEP Climate Forecast System, version 2 (CFSv2)
- 1° horizontal resolution (T126), 64 vertical layers
- Summer re-forecasts made each year for 20 years (1997-2016)
- Initialized from CFSR on May 1<sup>st</sup>-10<sup>th</sup> (10 ensemble members)
- Analyze June September (JJAS)

# Added heating experiments

- Control: Control set of re-forecasts with no added heating
- Added Heating: Re-forecasts repeated in same manner, but with an additional temperature tendency applied over the tropical Indo-Pacific such that the total diabatic heating rate is much closer to estimate from ERA-Interim
- Domain: Indian Ocean (60°E-120°E, 15°S-5°N) and Pacific Ocean (120°E-100°W, 15°S-20°N) decaying outside boundaries (5° e-folding scale); all vertical variation at and above 850 hPa level (p < 850 hPa)</li>
- Target: JJAS mean + trend + parabolic fit during season
- 10-day turn-on period prior to 00Z01Jun

# ISMR (mm/day)



# **Tropical indices in CFSv2 ensemble mean**

#### Correcting the tropical heating $\rightarrow$

- Reduces tropical mean biases
- Increases SST variance (in ensemble spread also)

| Index         | Nine  | 03.4 | EN    | ΜI   | DI    | ΜI   | EQV   | VIN  |
|---------------|-------|------|-------|------|-------|------|-------|------|
| 1997-2016     | MEAN  | VAR  | MEAN  | VAR  | MEAN  | VAR  | MEAN  | VAR  |
| Control       | -0.82 | 1.47 | -0.93 | 0.82 | -0.26 | 0.54 | -1.72 | 0.68 |
| Added Heating | -0.70 | 1.74 | -0.80 | 0.88 | -0.04 | 1.25 | 0.02  | 0.47 |

MEAN = mean bias

VAR = variance of index normalized by observed

# Prediction of tropical indices with CFSv2 ensemble mean

#### Correcting the tropical heating $\rightarrow$

Improves interannual prediction of SST, especially in Indian Ocean (and with EQWIN)

| Index         | Nine | 03.4 | Eſ   | ΜI   | DI   | VII  | EQ\  | WIN  |
|---------------|------|------|------|------|------|------|------|------|
| 1997-2016     | FVE  | COR  | FVE  | COR  | FVE  | COR  | FVE  | COR  |
| Control       | 0.61 | 0.86 | 0.53 | 0.75 | 0.23 | 0.52 | 0.31 | 0.60 |
| Added Heating | 0.60 | 0.89 | 0.61 | 0.80 | 0.66 | 0.86 | 0.72 | 0.87 |

FVE = fraction of observed variance explained

COR = correlation with observed index

# EQWIN (m/s)



# **CFSv2** teleconnections with tropical indices

#### Correcting the tropical heating →

- Consistent with Vishnu et al. (2019)
- Overly strong relationship with Pacific not improved
- Weakens artificial negative relationship with Indian Ocean dipole and equatorial easterlies

| 1997-2016     | Nino3.4 | EMI   | DMI   | EQWIN |
|---------------|---------|-------|-------|-------|
| Observed      | -0.50   | -0.28 | 0.2   | 0.28  |
| Control mean  | -0.8    | -0.67 | -0.58 | -0.57 |
| Control dev.  | -0.18   | -0.16 | -0.10 | -0.09 |
| Control total | -0.52   | -0.43 | -0.30 | -0.31 |
| Add htg mean  | -0.87   | -0.67 | -0.26 | -0.32 |
| Add htg dev.  | -0.14   | -0.12 | 0.11  | 0.13  |
| Add htg total | -0.60   | -0.45 | -0.08 | -0.05 |

# **Observed teleconnections in tropical heating**

- What remote tropical diabatic heating modes of variability explain the most inter-annual variance of Indian rainfall?
- Partial least-squares (PLS) regression (Smoliak et al. 2010)

GPCP rainfall central India average (74.5°–86.5°E, 16.5°–26.5°N)

y

ERA-Interim residual diabatic heating vertical average ( $p \le 850 \text{ hPa}$ ) over Pacific Ocean (120°E–100°W, 15°S–20°N)

 $X_{P\Delta C}$ 

and Indian Ocean (60°E-120°E, 15°S-5°N)

X<sub>IO</sub>

- PLS-1  $(X_{PAC}, y) \rightarrow$  Pac mode (ENSO signal) 1)
- Regress Pac mode out of  $X_{10}$  and  $y \rightarrow X'_{10}$  and y'
- PLS-1  $(X'_{10},y') \rightarrow IO \mod (dipole/EQWIN)$ 3)

# **Teleconnections in ERA-Interim tropical heating**



| CFSv2         | IO mode   |         |                  |
|---------------|-----------|---------|------------------|
| 1997-2016     | VAR       | $COR_Q$ | COR <sub>P</sub> |
| Control       | 0.46+0.68 | 0.55    | -0.69            |
| Added Heating | 1.18+0.97 | 0.96    | -0.07            |
| ERA-Interim   | 1.05      |         | 0.69             |

| Pac mode  |         |                  |  |  |  |
|-----------|---------|------------------|--|--|--|
| VAR       | $COR_Q$ | COR <sub>P</sub> |  |  |  |
| 0.86+0.08 | 0.96    | 0.76             |  |  |  |
| 1.25+0.13 | 0.99    | 0.77             |  |  |  |
| 1.20      |         | 0.61             |  |  |  |

VAR = variance of index normalized by observed  $COR_Q$  ( $COR_P$ ) = correlation between model and observed mode (mode and ISMR)



**Pacific** 





too strong
association
with West
Pacific;
opposite
relationship
with
monsoon

opposite relationship broken



10 mode ens dev **30N** 25N 20N K/day 15N 10N 5N 0.9 EQ **5**S 0.8 **10S** 0.7 **15S** Control 0.6 **20S** 80E 6ÒE 100E 120E 140E 160E 180 160W 140W 120W 40E 0.5 30N 0.4 25N 20N 0.3 dipole is 15N 0.2 10N 0.1 more noise 5N -0.1EQ than signal 5S -0.210S -0.3b) Added heating **15S** -0.4205 80E 100E 160W 6ÒE 120E 140E 160E 180 140W 40E 120W -0.530N -0.625N -0.720N 15N -0.810N -0.95N EQ 5S **10S 15S** 

**20S** 

40E

80E

6ÒE

120E

140E

160E

180

160W

140W

120W

100E

# Monsoonal circulation patterns



| CFSv2         | PLS-1     |                  |                  |
|---------------|-----------|------------------|------------------|
| 1997-2016     | VAR       | COR <sub>v</sub> | COR <sub>P</sub> |
| Control       | 0.27+0.44 | 0.10             | 0.77             |
| Added Heating | 0.33+0.49 | 0.45             | 0.92             |
| ERA-Interim   | 0.82      |                  | 0.82             |

| PLS-2     |                  |                  |  |  |
|-----------|------------------|------------------|--|--|
| VAR       | COR <sub>v</sub> | COR <sub>P</sub> |  |  |
| 0.33+0.28 | 0.52             | 0.66             |  |  |
| 0.23+0.42 | 0.71             | 0.57             |  |  |
| 1.13      |                  | 0.42             |  |  |

VAR = variance of index normalized by observed  $COR_{v}$  ( $COR_{p}$ ) = correlation between model and observed mode (mode and ISMR)

#### **Summary**

- Correcting tropical heating doesn't screw up the ocean improves SST mean bias and interannual prediction of SST
- Improved representation of ENSO heating and especially for heating dipole in tropical IO; associated low-levels winds greatly improved for both
- Heating dipole in IO is quite noisy in CFSv2
- CFSv2 monsoon over-dependence on ENSO not reduced
- CFSv2 has a strong opposite relationship between Indian rainfall and IO heating –
  possibly related to overly-strong co-occurrence of West Pacific heating/cooling (dipole
  forced by West Pacific in CFSv2?)
- Correcting tropical heating kills this bad relationship, but does not reverse it as is observed
- Correcting tropical heating only leads to modest improvement in Indian rainfall prediction, but more significant improvement in monsoon circulation