Land Cover/Land Use Change monitoring with Earth Observation and Land Surface Characterization

Vinay K Dadhwal Director Indian Institute of Space Science & Technology

SRMC, IITM, Pune, 05 Dec 2017

Land : Parameters of Interest

- Land Cover and Land Use
 - Conceptual difference, classification schema, (appropriate for use ?)
- Long-term changes
 - Land transformation : Anthropogenic Impacts
 - Deforestation
 - Expansion of Agricultural Lands
 - Urbanization
 - Wetland loss
- Inter- /Intra-seasonal changes due to natural causes / variability
- Hydrology & Rainfall variability led changes
- Extreme events & long-term effects
- Cryosphere
- Transformation within land use (agriculture, forest, ...)

Land Transformation & C Cycle change

- Large-scale land transformation
- Consequences on vegetation & soil C pools as well as NPP & C emissions
- Spatial Data sets needed
- Additional factors
 - Irrigation
 - Fire
 - Forest Degradation

Evolution of Land Surface in Models History: Land has been an important component in weather and climate models

Representing agriculture in Earth System Models: Approaches and priorities for development

Land Cover, Land Use, Land Resources & Data Sets

GLOBAL LAND COVER MAPPING

- Status of the global land cover
- Single sensor single year land cover products (except MODIS et MERIS)
- No compatibility between existing products and between typologies
- Continuous but not cumulative improvement from 1° to 300 m in 20 y.

CCI Land Cover : Data Integration Challenge

CCI Land cover challenge : consistency and change detection over time

Woorldcover – 14-16 March 2017 Frascati

CCI Land Cover : Access & Uses

CCI LC 300 m land cover viewer on-line with 3 consistent land surface season

http://maps.elie.ucl.ac.be/CCl/viewer/index.html

High Resolution Global Surface Water

High Resolution Global Surface Water

- Expert system classifier, Uses temporal trajectory of pixels in the multispectral feat space and Hue/Saturation/Value colour mo
- Evidential reasoning & visual analytics approach
- Calibrated based on a large spectral library (64,254 samples)
- Each pixel of the 3,066,102 Landsat scenes was classified as water, land or non-valid observation - 1.8 PB of data -
- Processing
 - One CPU would have taken 1,212 years
 - Google Earth Engine took 45 days
- Spatio-Temporal Validation : Based on 40.124 validation samples
- (Omission < 5% : Commission < 1%)

Rate of image acquisition by month (1984 - 2015)

Geographic and temporal unevenness of the archive

Number of L1T

Sta .		Landsat 5			Landsat 7			Landsat 8		
		Overall	Seasonal	Permanent	Overall	Seasonal	Permanent	Overall	Scasonal	Permanent
	Commission accuracy	99.45%	98.80%	99.56%	99.35%	98.38%	99.50%	99.54%	98.53%	99.66%
ĩ	Omission accuracy	97.01%	74.91%	98,79%	95,79%	73.82%	97.72%	96.25%	77.40%	99.10%
1		10 Percent 44	1. J. C. C. M. C. T.	the state		1 A 1 A 1 A 1	1	A.M.	1 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C	ALC: NO.

High Resolution Global Surface Water

Thematic Products

The validated water history was used to produce thematic products that document different facets of the surface water dynamics

Maps & Temporal Profiles

- Occurrence
- Occurrence Change Intensity
- Seasonality
- Recurrence
- Water Transition
- Max Water Extent

Full monthly water history

(+Metadata layers)

https://global-surface-water.appspot.com/

Habitation/Built-up : Global Impervious Layer

Global Impervious Cover From Landsat E. Brown de Colstoun¹, C. Huang² et al.

1 NASA Goddard Space Flight Center, Greenbelt, MD 2 Department of Geographical Sciences, University of Maryland, Colleg

Current estimates of urbanization are at scales of ~500-1000m but changes in the urban fabric occur at much finer scales (~15-30m).

- Landsat resolution provides a good balance for global coverage, spatial details and repeatability.
- The GLS-IMP project is producing the first Global 30 m impervious surface products using Global Land Survey (GLS) Data.
- Subpluel estimation is essential since most urban pluels are highly mixed.
- We have derived a very large global training data set from the NGAs non-classified commercial satellite image archive (e.g. Quickbird, Worldview). Access to these free data and global Landsat data are critical.
- Approach is object-based, automated:
 - Surface reflectance provides consistent radiometry.
 - Regression tree algorithm is able to model complex nonlinear relationships and handle massive training set.
 - Image segmentation tools (Hseg) provide hierarchical image objects for training and for post-processing

First 30m Global Urban Product

Landsat image

Percent Imperviousness

Global Urban Footprint (GUF 15)

- Automatic extraction of training areas (urban / non-urban)
- Classification based on Support Vector Machines (SVM)
- Combination & post-classification enhancement ruleset

Global Urban Footprint (GUF) a mask of built-up areas derived from TerraSAR-X and TanDEM-X data acquired between 2011 and 2013

Validation

^{50 x [(1000 + 1000) x 9] =} **900.000**

validation samples

Three possible labels:

1: Urban

> 50% covered by buildings

- 2: Moderately Urban < 50% covered by buildings
- 3: Non-Urban No buildings

GUF+15 has extra information from GHSL

NOEDA: National Information System for Climate and Environment Studies (NICES)

Total Downloads from Bhuvan > 3 Lakhs (Satellite Data + Products)

Products	Resolution/ G	Gridsize	Availability	Frequency							
Atmospheric and Climate Sciences											
Derived Tropospheric Ozone	1° x 1°	2010 - 2013		Daily							
Ocean Sciences											
Daily Ocean Heat Content	0.25°	2002 - 2015		Daily							
Daily Tropical Cyclone Heat Potential	0.25°	1998 – 2015		Daily							
Model Derived Depth of 26°C Isotherm	0.5° x 0.5°	2013 - 2015		Daily (15 days lag)							
Model Derived TCHP	0.5° x 0.5°	2013 - 2015		Daily (15 days lag)							
Ocean Wind Curl	0.5° x 0.5°	2012 – 2014 (Feb)		Daily							
Ocean Wind Stress	0.5° x 0.5°	2012 – 2014 (Feb)		Daily							
Ocean Wind Velocity	0.5° x 0.5°	2012 – 2014 (Feb)		Daily							
Terrestrial Sciences											
AWiFS: Snow Cover Fraction	3' X 3' Grid	2014-2015		15 Days							
AWiFS: Water Bodies Fraction	3' X 3' Grid	2004 – 2013, 2014-2015		Monthly, 15 Days							
Mesoscale compatible inputs for: MM5	30 sec, 2, 5 mins	2004-05 to 12-13 (9 Cycles)		Yearly							
Mesoscale compatible inputs for: WRF	30 sec, 2, 5 mins	2004-05 to 12-13 (9 Cycles)		Yearly							
OCM2: Albedo	1 Km	2013 – 2014		15 Days							
OCM2: NDVI - Global Coverage	8 Km	2013		Monthly							
OCM2: NDVI - Local Coverage	1 Km	2011, 2012-2014		Monthly, 15 Days							
OCM2: Vegetation Fraction	1 Km	2011, 2012-2	2014	Monthly, 15 Days							
Snow Melt and Freeze	2.225 Km	2009 – 2013		2 Day							
Surface Soil Moisture	0.25° x 0.25°	2012 – 2014		Daily							
Surface Soil Moisture - 2 Day	0.25° x 0.25°	2012 – 2014		2 Day							

Downloads

Products

OHC

NICES

hysi

ТСНР

Spatial Databases for Vegetation

- Vegetation parameters cover Vegetation Type, Vegetation phenology, LAI, Vegetation Cover/Fraction, Biomass & accompanying parameters of albedo, conductance, roughness, interception
- Vegetation Type is covered in Land Cover/Use
- Vegetation Phenology, LAI, VF currently are covered by surrogate remote sensing variable NDVI (Normalised Difference Vegetation Index)
- Global products are available from AVHRR & MODIS sensors.
- Procedure & processing chain established for product generation from ISRO missions – Ocean Colour Monitor (OCM) of Oceansat-II and AWiFS of Resourcesat-2

OCM Geophysical Products: NDVI, VF, Albedo > National Products – OCM-LAC

- NDVI & Vegetation Fraction, Albedo [Visible (0.3 to 0.7 um), Broadband (0.3 to 3 um)]
 - km resolution, Fortnightly 0 Products, Maximum value Composite of 8 datasets
- Global Products OCM GAC
- NDVI Products
 - o @ 8km resolution, Monthly Products, Maximum Value Composite of datasets

Features

- Ortho Rectified to sub pixel level
- Atmospherically corrected 0
- Compositing to minimize cloud contamination 0
- Good correlation with MODIS (> 90%) 0
- Bhuvan Downloads: 2760

Global Soil Organic Carbon : EO assisted

Soil organic carbon (t°C°ha-1) to 1°m depth based on the Harmonized World Soil Database Source: Scharlemann et al. (2014) (GCOS – 195, Fig 68)

Sreenivas et al., 2017, Geoderma

Organic carbon density

Soil depth

Irrigation

0 500

1500

Increase in node purity

Soil depth

Irrigation

20

% increase in MSE

10

0

30 40

Spatial Databases for Hydrology (EO-based)

- Required /available parameters include precipitation, snow cover, surface ... water, soil moisture,
- Indian EO based snow cover & wetlands being produced as monthly datasets by NRSC (AWiFS on Resourcesat-2 used)
- Special study on central CTCZ using SAR highligted large monthly variation in surface water (wetlands & rice crops) during monsoon (2011)
- Automation of surface water using Risat-1 SAR initiated
- Experimental soil moisture by a combination of techniques (VIC, bucket model, EO-derived initiated)

Automated Satellite Data Processing

Geophysical Products : Water Bodies Fraction, Snow Cover Area

data is used

Surface water bodies (18m resolution) derived from RISAT-1 MRS (1-25th August 2014)

Mahanadi River Basin

WSA : Rice Fields

Total Waterspread Area

Water spread area

Waterspread Area : Spatial View

Inseason Spatial water bodies (% of 3' 3' grid)

Land Geophysical Products from OCM: VEGETATION INDICES, ALBEDO, WATER LAYER

- NDVI & Vegetation Fraction Products from OCM-LAC :
 - o Fortnightly Products
 - o Maximum value Composite of 8 datasets
 - o @ 1 km resolution
- Land Surface Albedo Products from OCM-LAC Visible (0.3 to 0.7 um)
 - Broadband (0.3 to 3 um)
 - Fortnightly Products
 - o @ 1 km resolution
- Global NDVI Products from OCM-GAC (2013)
 - Monthly Products
 - Maximum Value Composite of 4 datasets
 - o @ 8km resolution

Features

- Ortho Rectified to sub pixel level
- Atmospherically corrected
- Compositing to minimize cloud contamination
- Good correlation with MODIS (> 90%)
- Bhuvan Downloads: 2760

Global Soil Moisture

- Mean volumetric soil moisture for May derived from combined use of passive and active satellite MW data for 1979–2010 (GCOS – 195, Fig 70)
- Source: ESA Soil Moisture CCI, http://www.esa-soilmoisture-cci.org/

Snow Monitoring

- Snow Monitoring (2004-2014)
 - 85% to 22% of geog. Area (12.5 Mha)

- Snowmelt Runoff
 - Modeling & Prediction

Land Surface Modelling

- Basin Scale hydrological modelling for Mahanadi Basin
- Geo-Physical products : NRSC BHUVAN Portal –for CTCZ studies
 - In-season surface water spread dynamics
 - High spatial resolution land use –land cover datasets for premonsoon and monsoon season
 - Intra seasonal vegetation dynamics (Fortnightly/Monthly: VF,NDVI)

Land Surface Hydrological Modelling - Mahanadi River Basin

- Variable Infiltration Capacity Hydrological Model
 - Open source; Grid-wise water and energy balance
 - Sub-grid heterogeneity of Land cover
 - Soil depth-wise hydrological response
 - Vegetation phenological changes
 - Daily / sub-daily time step
- 9 min (~16.5km), 3 min (~ 5.5km) Grid-wise data base
- Geo-spatial data
 - Terrain Topographic, Soil (NBSSLUP), LULC (NRC-250k), LAI, Albedo, Irrigation
 - Meteorological Rainfall, Temperature, ... (CDAS/CPC)
 - Hydrological River discharge, Reservoir Storage/Releases, GW levels, ...
- **Galibration with river discharge data (India-WRIS)**

Land Use / Land Cover Parameterization

Calibration with River Discharge

Mahanadi (Tikerapara) Annual Discharge

Long Term Fluxes

nrsc

Near Real Time Hydrological Modelling - Products & Services

National Remote Sensing Centre

Hydrological Science Near Real Time Hydrological Modelling - Products & Services

Experimental Hydrological Eluxes using Land Surface Model

Description of terrestrial hydrological flux components in terms of their geographical distribution and chronological variation is useful for water resources management, droughthood assessment and climate related research. Earth Observation (EO) data from multitude platforms are providing wide ranging datasets that are useful for creation of spatially distributed parameters appropriate for hydrological budgeting and modeling.

Macro-scale, process based hydrological (Variable Infiltration Capacity - VC) model has been adopted for modelling water balance components at uniform grid level. VIC, a semi-distributed & physically based hydrological model, solves both the water balance and the energy balance (Liang X, 1994). Model computes evapotranspiration, surface runoff, soil moisture, base flow and energy fluxes at the predefined grid resolution (few km to hundred km).

Grid Details and Features

9min (~16.5km) Grid level modelling frame work (water balance mode) has been setup for the entire county using Geo-spatial data sets and historic meteorological data. Current season daily meteorological data are used to compute daily hydrological fluxes at 9min grid level. The orderly description of hydrological fluxes are useful for quantifying spatial and temporal variation in basin/sub-basin scale water resources, periodical water budgeting and form vital inputs for studies on topics ranging from water resources management to tand-atmosphere interactions including climate change.

Daily Products | Interactive Viewer and Trend Analysis | Time Series Animation

Daily Products

All Products can be visualized based on the Date selected

About Product

+

Experimental model computed Runoff, Soll Moisture and Evapotranspiration (Version 10) are derived through water balance computations using VIC-3L hydrological model considering geo-spatial data and current season meteorological data. Runoff and Evapotranspiration are represented in mm and Soil Moisture is represented in m⁹m³. All the products are averaged at 9 min (~16.5 km) spatial resolution at 24 hr time-step.

Interactive Viewer and Trend Analysis

Interactive viewer allows the user to zoom in and zoom out with options to select the product type, grid size, period and the date. A click on any grid in the interactive viewer shows the temporal trend for any one or all the products available, with option to choose the time period.

Product :

Grid Size : 9'X9

Period :

Surface Runot

Source -- http://bhuvan.nrsc.gov.in/nices/

- Experimental model computed Runoff, Soil Moisture and Evapotranspiration (Version 1.0) are derived through water balance computations using VIC-3L hydrological model considering geo-spatial data and current season meteorological data using IMD Temperature point data with satellite based derived rainfall data of CPC & TRMM. All the products are averaged at 9 min (~16.5 km) spatial resolution at 24 hr. time-step.
- Daily Hydrological fluxes are generated and uploaded to NRSC/Bhuvan in near real time with a lag of 2days.

•

Land Surface Geophysical Products from ISRO Sensors

- Operational (OCM)
 - Vegetation Indices Products
 - National & Global
 - Surface Albedo Products (Snow-Free)
 - Water bodies products
- New Initiatives (AWIFS)
 - Vegetation Indices Products
 - Snow Albedo Products
 - Water fraction products

Agriculture : Crop Mapping & Crop Productivity

Agriculture – Yield – Simulation Model - NPP

Spatial Crop Simulation for wheat 79°E 78°30'E 77°E 77°30'E 78°E

OBSERVED YIELD (kg/ha)

Land Transformation & C Cycle change

- Large-scale land transformation
- Consequences on vegetation & soil C pools as well as NPP & C emissions
- Spatial Data sets needed
- Additional factors
 - Irrigation
 - Fire
 - Forest Degradation

Agroecosystem flux tower sites

- Agro-ecosystems being addressed:
- Irrigated Wheat : Meerut
- Flooded Rice
- Rainfed Chickpea
- **Rainfed Cotton**

lute **Rice**

- : Maruteru, W Godavari : ANGRAU, Andhra
- :Jawalgera
 - : Nagpur
 - : Barrackpore

- : SP Univ, UP
- : CSF, Raichur, Karnataka
- : ICAR-CICR, Nagpur
- : ICAR-CRIJAF, W Bengal

Flux tower NEE upscaled for Rice (W. Godavari)

Land Surface Modelling for Forest & Indian carbon Cycle

Forest Area : Sources & Definitions

G: Global UN FAO GFRA2015; F-Forests, O-Other Wooded Land B: India FSI, Forest Cover, Biennial State of Forest Reports

Deforestation in India 1930-2013

Biodivers Conserv DOI 10.1007/s10531-015-1033-2

ORIGINAL PAPER

Quantification and monitoring of deforestation in India over eight decades (1930–2013) 70.00

C. Sudhakar Reddy¹ · C. S. Jha¹ · V. K. Dadhwal¹ · P. Hari Krishna¹ · S. Vazeed Pasha¹ · K. V. Satish¹ · Kalloli Dutta¹ · K. R. L. Saranya¹ · F. Rakesh¹ · G. Rajashekar¹ · P. G. Diwakar¹

Table 1 Details of spatial data used in the study Sl. no Type Period

resolution	 saterinte scenes
1 Topographical maps 1920-1940 1:250,000	251
2 Landsat MSS 1972–1977 80 m	356
4 Landsat MSS 1985 80 m	452
5 IRS 1 A/1B LISS-I 1995 72.5 m	470
6 IRS P6 AWiFS 2005 56 m	64
7 Resourcesat-2 AWiFS 2013 56 m	64

* Scale for topographical maps; spatial resolution for satellite datasets

Deforestation in India 1930-2013

A

Fig. 2 Forest cover change map of India: 1930-2013

Summary of Carbon estimates for Indian forests

SΝ	Year	Methodology Adopted	BM (T g)	C Pool(PgC)
1.	1985	field inventory of growing stock and using single conversion factor	4432	1.99
2.	1986	RS based forest area, BM densities from literature for five crown	8372	4.18
		cover for some of the forest types and extrapolating the same		
		for entire India		
3.	1982	Strata wise RS based forest area, field inventory based GS, Biomass	7960	3.98
	1991	Expansion Factor (BEF) for two crown density classes	8142	4.07
4.	1993	State wise field inventory based data on growing stock, biomass	8685	4.34
		expansion factor for 3 crown density classes and 4 forest categories		
5.	1993	strata wise field inventory data, mean wood density for various	4313	2.16
		strata and BEF ranging from 1.51 to 1.59 for different forest		
		composition		
6.	1984	Strata wise estimation of GS based on forest inventories, thematic	2398	1.085
	1994	map and vegetation maps for different density class. wood biomass	2395	1.083
		further estimated using specific gravity and calculated GS for states		
7.	1988	district wise RS forest area, field inventory based GS, BEF for two	7742	3.871
	1994	crown density classes	7748	3.874
8.	1995	stratum wise field inventory of growing stock as reported by FSI	4504	2.03
		and standard conversion factor as per IPCC guidelines		
9.	1992	strata wise RS based forest area, field inventory based GS, state	5253/6141	2.6/3.1
	2002	wise mean wood density and two different values for BEF	5321/6359	2.7/3.2
		calculated from earlier studies		
10.	1999 F	RS based forest area biomass density national level improved	6244	3.122
	2005 e	estimates on branches and twig	6622	3.311
11.	1980 E	cological studies based mean phytomass density for two forest types 2	580	1.29

1. Dadhwal & Nayak 1993. 2. Ravindranath et al., 1997 3. Dadhwal & Shah., 1997 4. Chhabra et al., 2002a 5. Haripriya., 2000 6. Manhas et al., 2006 7. Chhabra et al., 2002b 8. Lal and Singh 2000 9. Meenakshi Kaul 2011 10. Kishwan et al., 2011 11. Hingane 1991

Indian Forest Carbon Pools (FSI)

FOREST C STOCK

Mean estimates by Forest Types, Physiographic Zones & Density Class
Input data from 178 districts over multiple cycles 2002-2008 .ca 22,000 points

• (Spatial Mapping & Uncertainty Analysis to be carried out)

Carbon Stock change from deforestation

Contents lists available at ScienceDirect

Global and Planetary Change

journal homepage: www.elsevier.com/locate/gloplacha

Geospatial assessment of long-term changes in carbon stocks and fluxes in forests of India (1930–2013)

C. Sudhakar Reddy *, F. Rakesh, C.S. Jha, K. Athira, Sonali Singh, V.V.L. Padma Alekhya, G. Rajashekar, P.G. Diwakar, V.K. Dadhwal

National Remote Sensing Centre, Indian Space Research Organisation, Balanagar, Hyderabad 500 037, India

Fig. 2. Forest area and Above Ground Carbon biomass stocks in India; 1930 to 2013.

Fig. 9. Change in above ground biomass carbon stock in India from 1930 to 2013.

Forest phytomass C pools & change

Phytomass C density change analysis (1994-2010)/ Variable Spatial Details

Methodology Upgrade : Estimation of error

Rajashekar, Fararoda, Reddy, Jha, Ganeshaiah, Singh, Dadhwal, Ecological Indicators, 2018, 85:742

National Biomass Map estimated using ALOS-PALSAR and forest height

Estimates of C emissions (deforestation, LUC)

(Reddy, Rakesh, Jha, Athira, Singh, Alekhya, Rajsekar, Diwakar, DADHWAL, 2016, Global Planet Change, <u>146</u>:50)

Period	Net C release (Tg C yr ⁻¹)	Remarks	Reference
1980	-3.98	Volume based biomass estimates using net C flux model	Hall and Uhlig (1991)
1980	41.3	0.75 of forest phytomass in deforested area	Hingane (1991)
1980	33	Model of land use transformation	Houghton et al. (1987)
1980	20.2	As % of global net C release using deforestation rate	Ahuja (1991)
1985	42.52	Estimates from fire, firewood, shifting cultivation and deforestation	Mitra (1992)
1985	25.7	Comprehensive inventory of greenhouse gas emission	Subak et al. (1993)
1986	-5	Net difference between emissions (63.g Tg) and removals (68.9 Tg C)	Ravindranath et al. (1997)
1987	38.21	Net emission from deforestation and logging	WRI (1990)
1989	32.75	Net C release from deforestation and logging	WRI (1992)
1990	0.4	IPCC revised 1996 guidelines	ALGAS (1998)
1991	5.73	IPCC revised 1996 guidelines	WRI (1994)
1994	12.8 Estimates based on fluxes between forest biomass (live or dead),		Haripriya (2003)
	soils, forest products and atmosphere		
1994	3.86	IPCC revised 1996 guidelines	NATCOM, 2004
1982-1992	5.65	IPCC revised 1996 guidelines	Kaul et al. (2009)
1985-1996	996 9 Using a simple book keeping MBL model estimates from deforestation,		Chhabra and Dadhwal (2004)
		afforestation and phytomass degradation	
1880-1996	47.00	Using a simple book keeping MBL model estimates from deforestation,	Chhabra and Dadhwal (2004)
		afforestation and phytomass degradation	
1992-2002	-1.09	IPCC revised 1996 guidelines	Kaul et al. (2009)
2003-2005	50.7	IPCC revised 2003 guidelines	Sheikh et al. (2011)
2005-2007	31.1	IPCC revised 2003 guidelines	Sheikh et al. (2011)
1930-1975	48.19	IPCC revised 2006 guidelines	Present study
1975-1985	63.18	IPCC revised 2006 guidelines	Present study
1985-1995	-41.4	IPCC revised 2006 guidelines	Present study
1995-2005	26.23	IPCC revised 2006 guidelines	Present study
2005-2013	53.97	IPCC revised 2006 guidelines	Present study

C-emission from land transformation

Cumulative net carbon flux [PgC] from Indian forests due to landuse changes (1880–1996) under different scenarios

	India	Central	East	NE	NW	South
Scenario 1	2.34	_	_	_	_	_
Scenario 2	3.24	-	-	_	-	-
Scenario 3	3.25	1.14	0.417	0.55	0.37	0.76
Scenario 4	5.45	1.75	0.75	1.24	0.52	1.17

NE: Northeast region; NW: Northwest region.

Scenario 1: deforestation + afforestation, low biomass.

Scenario 2: deforestation + afforestation, high biomass.

Scenario 3: deforestation + afforestation, variable biomass (regional level).

Scenario 4: deforestation + afforestation + phytomass degradation, variable biomass (regional level).

Chhabra & Dadhwal, 2004, Climate Change, 64: 341-360

Primary Productivity and Carbon Flow

Sal forest Flux tower - Barkot

Cumulative Annual gC/m2 GPP : 2916.2 Re : 2408. NEE : -507.9

Watham, Kushwaha, Patel, Dadhwal, Kumar 2017, Trop Ecol, 58:761

Fig. 8. Relationship between gross primary productivity (GPP) and vapour pressure deficit (VPD).

Forests : Sal vs Teak

 First Annual Comparison of differences in productivity including NEE for Feb 2017 to Jan 2018

2. Betul (teak Forests) – 3135 g C m-2 -100.00

Annual Sum -NEE:

- 1. Kanha (Sal Forests) 303 g C m-2
- 2. Betul (teak Forests) 526 g C m-2

Jha, Chand, Rodda, 2019, Unpublished

Simulated monthly NPP & NEP (1981-2006)

Fig. 2 Temporal evolution of

monthly NEP (continuous line)

and NPP (dash line) over India

during the climatological years

shows the evolution of NEP and NPP for the agriculture, the

shrub-grass and the forest land-

Fig. 3 Bar plot of NEP budgets

of India during 1981-2006 agricultural years

cover types in the country

(1981-2006) is shown in the upper panel. The lower panel

FURED Ver. 6.90 NOA//PMIL TeVP Z : -2.147E+09 TIME : 15-OCT-2009 06:28 35⁰№ NPP LATITUDE 15%N 5°N 65°E 75°E 95°E 85°E LONGITUDE Z : -2.147E+09 TIME : 15-0CT-2009 06:28 NEP 354 LATTUDE 15¶N 5%N -85°E LONGITUDE | 75⁰E 05.95 6515 NEP (gC/m^2/month)

Fig. 8 Comparison of simulated annual NPP using the CASA model vis-à-vis ground-based NPP estimates from crop statistics in the western India (Rajasthan, Gujarat, and Punjab)

Nayak et al. 2009, Envi Mon Asess Nayak et al. 2015, Environ Earth Sci,

Enhanced Use of EO / RS for Land Surface Characterization to Support LSM

Recent Studies on use of EO/RS

- High Resolution Crop Maps
- Crop Phenology (from RS) & parameterization (e.g. Thermal time)
- Irrigation Mapping
- Crop-wise Irrigated Area Mapping (source-wise)

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-85 Manuscript under review for journal Geosci. Model Dev. Discussion started: 25 April 2019 © Author(s) 2019. CC BY 4.0 License.

Developing a sequential cropping capability in the JULESvn5.2 land-surface model

Camilla Mathison^{1,2}, Andrew J Challinor², Chetan Deva², Pete Falloon¹, Sébastien Garrigues^{3,4}, Sophie Moulin^{3,4}, Karina Williams¹, and Andy Wiltshire¹

Cropping Intensity from EO Data

J Gray, M Friedl, S Frolking, N Ramankutty, A Nelson, & M K Gumma (2014) Mapping Asian Cropping Intensity With MODIS. IEEE J OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS & REMOTE SENSING, VOL. 7(8)3373

∂ OPEN ACCESS

Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m time-series data

Murali Krishna Gumma^a ^(b), Prasad S. Thenkabail^b, Pardharsadhi Teluguntla^b, Mahesh N. Rao^c, Irshad A. Mohammed^a and Anthony M. Whitbread^a

(a)

(u)

IRRIGATION in LSM

- India (with China & US) dominates in adoption of irrigation
- Irrigation includes surface and ground water which changes over time (strongly affected by rainfall variability)
- Irrigation is heterogeneous amongst regions, crops and timing as well as amount

Model Impact of Irrigation

- A Review of the Available Land Cover and Cropland Maps for South Asia -P Patil & M K Gumma, Agriculture 2018, 8, 111
 - A number of Global and regional Land Cover, Crop Land and specific crop available from 1km to 30m pixel size. Variation in area amongst data sets could be upto 20 per cent.

Figure 3. Implication of resolution on areas. The irrigated areas (in million hectares) mapped using (a) NOAA AVHRR 0.1 degree (10,000 m), (b) MODIS Terra visible and NIR bands (500m), (c) MODIS Terra red and NIR bands (250 m), and (d) Landsat ETM+ visible and NIR bands (30 m) plotted against the log (pixel area in Ha) of each sensor.

Change in Irrigation by Source (Tamil Namdu 2000-2009)

Environ Monit Assess (2015) 187:4155 DOI 10.1007/s10661-014-4155-1

Temporal change in land use Nadu and management implie

Murali Krishna Gumma • Kei Kajisa • Irshad A. Mohammed • Anthony M. Whitbread Andrew Nelson • Arnel Rala • K. Palanisami

Fig. 6 Irrigated area changes during 2000 to 2009

Land Surface Indian Data Sets

RESEARCH COMMUNICATIONS

Mesoscale model compatible IRS-P6 AWiFS-derived land use/land cover of Indian region

Biswadip Gharai^{1,*}, P. V. N. Rao² and C. B. S. Dutt³ Curr Sci, 2019, (MM5 & WRF) ¹Atmospheric Chemistry and Processes Studies Division,