

Soil moisture and land-atmosphere feedbacks

Soil moisture revamps the temperature extremes in a

warming climate over India

Mangesh Goswami¹, Bhupendra Bahadur Singh¹, Manish Ranalkar², Naresh Ganeshi¹, Madhusudan Ingale¹, Joel Sarode¹, Milind Mujumdar¹

¹Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, ²India Meteorological Department, Pune

Examining surface and subsurface soil moisture variability over COSMOS-IITM site

Objective

 \succ To understand surface and subsurface soil water dynamics for the recent cases of contrasting dry and wet conditions during the year 2019 and 2022.

(a) Premonsoon 2019			_ (
- ∞	 Soild line : surface Dotted line : subsurface 	Observation GLDAS	0.3

Analyzing soil moisture (SM) impact on temperature extremes (ExT) in a warming climate over India

Objective

To understand the ExT changes over Naresh G. Ganeshi, Milind Mujumdar , Yuhei Takaya, Mangesh M. Goswami, Bhupendra Bahadur Singh, B Krishnan & Toru Terao the Indian region in historical and of Climate and Atmospheric Science 6, Article number: 12 (2023) Cite this article future climate by examining the impact of SM-T coupling using the SM sensitivity experiments

Model simulation experiments

▶ Impact of SM-T coupling on ExT is investigated using the MRI-AGCM (3.2) high-resolution (~60 km) climate model simulations.

Volumetric water content (VWC %)

The probability density of observation (Blue), reanalysis (ERA-5; Black) and model (GLDAS; Red) for the surface and subsurface SM variability is distinguished by solid and dashed lines respectively.

Findings

➢ If pre-monsoon months (MAM) are devoid of convective/thunderstorm activities, it leads to extreme temperature and drier SM conditions as

- > A suite of model experiments (HIST, FUT, DRY-SM (HIST), WET-SM (HIST), DRY-SM (FUT) and WET-SM (FUT)) are analyzed for the historical (HIST: 1951-2010) and future (FUT: 2051-2100) periods.
- > The DRY-SM and WET-SM simulations are sensitivity experiments in which the SM initial conditions are perturbed on 1st day of each month (-20 % for the DRY-SM, and +20 % for the WET-SM for both climates)

Findings

Extreme temperature event is defined if the daily T_{max} value at each grid point is greater than 90th percentile T_{max} of the corresponding day and persists at least for three consecutive days.

noted during 2019 and 2022.

The subsurface SM could vary significantly, constrained to the dry and wet spells which also depends on the intensity of the rainfall.

Characterizing variability in rainfall-surface SM relation over the CMZ

Objective

> To understand and characterize spatial and temporal aspects of the variability in rainfall – surface SM relation during recent deficit (2015) and excess (2019) monsoon years with respect to climatological mean of 1980-2020.

ExT over NCI (1951-2010)

ExT over NCI (2051-2100)

Spatial distribution of daily rainfall and surface SM anomalies (JJAS average) for CMZ of India. Data source: IMD gridded rainfall data, GLDAS soil moisture data.

Findings

- \succ Elongated tail of 2019 rainfall anomalies \rightarrow intense rainy spells \rightarrow concurrent response in surface SM \rightarrow <u>Orderly response</u>
- \succ Negatively shifted distribution in 2015 rainfall anomalies \rightarrow more break spells \rightarrow <u>Complex response</u>
- > Novel information theoretic technique suggests increase in complexity during 2015 (deficit) which may indicate the changing characteristics of the regional forcing.
- > Over NCI, a 20% departure in SM significantly revamps frequency, duration and intensity of ExT by 2–5 events/year, 1-2 days/event and 0.5–2.1 °C, respectively.
- Importantly, the impact of SM perturbations on of ExT characteristics becomes less prominent with intensification of global warming.