Does increasing horizontal resolution improve seasonal prediction of Indian summer monsoon? A climate forecast system model perspective

Siddharth Kumar¹, P. Mukhopadhyay¹, R. Phani¹, C. Balaji²

1 Indian Institute of Tropical Meteorology, Pune, India

2 Indian Institute of Technology, Madras

A possible way to improve model biases and prediction skill

A brief description of the model

Model Description	CFSv2 T126	CFSv2T382
Truncation	126	382
Convective Parameterization	Simplified Arakawa Schubert (Pan and Wu, 1995)	Simplified Arakawa Schubert (Pan and Wu, 1995)
Microphysics	Zhao and Carr (1997)	Zhao and Carr (1997)
Radiation	Rapid radiative transfer (RRTM) (Clough et al., 2000)	Rapid radiative transfer (RRTM) (Clough et al., 2000)
land surface model	NOAH (Ek et al., 2003)	NOAH (Ek et al., 2003)
Vertical Levels	64	64

In favor of the approach

Against the approach

Prodhomme et al. (2016) ➢ Ramu et al. (2016) ➢ Jia et al. (2015) Delworth et al., (2012) ➢ Gent et al. (2010) Kobayashi and Sugi (2004)

> Scaife et al., (2019) > Scaife et al. (2019) ➢ Zhu et al., (2015)

Whether increasing the horizontal resolution of the model has any impact on the seasonal prediction skill, remains elusive in literature

What about qualitative (categorical) prediction?

- → Respective probabilities of an accurate forecast in a \succ q₁ and q₂ randomly chosen year that the low and high-resolution versions of the CFSv2 model will produce
- $\succ X_1, X_2, \dots, X_n \rightarrow$ random variables (RV) associated with the forecast of CFSv2 (T126)
- $\succ Y_1, Y_2, \dots, Y_n \rightarrow random variables (RV) associated with the forecast of$ CFSv2 (T382)
- $\gg X_i$'s and Y_i 's \rightarrow \sim Ber (q₁) and Ber (q₂) respectively

$$X_{i} = max \left\{ 0, \frac{|\operatorname{anom}(i)|_{\operatorname{CFS126}} \operatorname{anom}(i)_{obs}|}{\operatorname{anom}(i)_{\operatorname{CFS126}} \operatorname{anom}(i)_{obs}} \right\}$$

$$Y_i = max \left\{ 0, \frac{|anom(i)_{CFS382} anom(i)_{obs}|}{max} \right\}$$

Does increased resolution improve synoptic variance?

Seasonal means and anomalies in CFSv2 T126 and T382

Anomaly correlations

r ₁ (T126 with observation)	r ₂ (T382 with observation)
0.42 (IMD)	0.44 (IMD)
0.34 (GPCP)	0.43(GPCP)

Hypothesis testing

P-value > 0.2

 $anom(i)_{CFS382}$ anom $(i)_{obs}$ -ι

 $H_0: q_1 = q_2$ $H_1: q_1 \neq q_2$

Contingency Table	T126 gives accurate prediction	T126 gives inaccurate prediction
T382 gives accurate prediction	17 (A)	7 (C)
T382 gives inaccurate prediction	5 (B)	10 (D)

 $T = \frac{(B-C)^2}{B+C}$ Test Statistic

The test statistic T follows a chi-square (χ^2) distribution with one degree of freedom

P-value > 0.5

Convective quasi-equilibrium

J/kg/da

140

120

 $T_i = \frac{1}{S_i}$

Reference: Kumar, S., Phani, R., Mukhopadhyay, P., & Balaji, C. (2022). Does increasing horizontal resolution improve seasonal prediction of Indian summer monsoon?: A climate forecast system model perspective. Geophysical Research Letters, 49(7), e2021GL097466.

90E