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GAS-PHASE TROPOSPHERIC CHEMISTRY
ECHAMS-MOZ [Q--NOX-CO-CH -NMHC]

] The model comprises (1) the general

o f ..o circulation model ECHAMSG, (2) the
_ wind,ste | J-values °"I“°” w0, tropospheric chemistry module, MOZ,
Cloud (" Condensation, l and (3) the Hamburg Aerosol Model
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« The HAM module takes Into account the major aerosol compounds, namely
sulfate, BC, OC, sea salt, and mineral dust.

* |t represents aerosols as internal and external mixtures with four soluble and
three insoluble modes.

 The chemical scheme used In the tropospheric chemistry module, MOZ, Is
Identical to the MOZART-2 model.

* It Includes 63 tracers and 168 reactions to represent Ox—NOXx-hydrocarbon
chemistry.
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Fig: Spatial distribution of (a) AOD anomalies averaged for spring, (b) RF at TOA, (c) RF at the surface, (d) RF at in-
atmosphere, (e) Meridional cross-section over Indian Ocean-western Pacific (averaged 30° E — 140° E) of anomalies
(%) of BC, (f) same as (b) but for heating rate, (g) same as (b) but for water vapor.

ECHAM6-HAMMOZ model simulations for the period 2001-2016:

» (1) CTL (2) All anthropogenic BC, OC, and sulfate aerosols switch off over
South Asia (aerooff), (3) Only BC aerosols switched off (BCoff), (4) only OC
aerosols switched off (OCoff), (5) only sulfate aerosols switched (Suloff).

» There I1s an enhancement in AOD by 0.08 — 0.8 over South Asia due to South
Aslan anthropogenic aerosols.

» The aerosol changes cause a reduction in RF at TOA by -1 to -3 W m~ and
surface by -7 to -21 W m=% and an increase in In-atmosphere RF by -14 W m-2.

» The South Asian aerosols are transported to the Southern hemisphere.

» South Asian aerosols are also transported into UTLS and the Arctic enhances
heating by 0.6 to 20 K/month.

» Atmospheric heating cause an increase in water vapor by 10% in the UTLS.

» Enhancement of stratospheric water has implications on stratospheric ozone loss

and climate change.
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Fig: (a) Aerosol Optical Depth (AOD) at 550 nm (%), (b) Dust anomalies, (c) seasonal mean net radiative forcing at
the surface, (d) Latitude-pressure section of anomalies in temperature, (e) Latitude-pressure section of anomalies in
vertical velocities, (f) distribution of anomalies in rainfall averaged for the monsoon season (mm day-1).

Anthropogenic aerosols and gaseous emissions are scaled as per Google and
Apple mobility data during COVID-19 lockdown period April-May 2020 in the
ECHAM6-HAMMOZ model.

> Our simulations show that lockdown measures caused a reduction of aerosol

pollution over the Asian region by ~40%,

»Increase in regional surface solar radiation by up to 4 Wm-=2 and tropospheric
shortwave heating rates by 0.0003 — 0.004 K.day?! over India. This effect is
compounded by accumulated dust over the TP region.

» This warming resulted in an accelerated moisture inflow and strengthened the

monsoon Hadley circulation and precipitation by 20%.

i .
;///////4// ///// i 7 .-

s

\ 7

D
80K 90K

| I ) 1 1
70E T0E 80E 90E T0E 80E

70E 9K

(f) cloud cover(%) 78:90E,20:27N (g)

MODEL

(e) 2m temperature anom (°C)

1.6
1.2
0.8 200 -

0.4

30N 30N+

0

20N - 0. (400 20N 7 4 ~0.04
- / -0.8 600 . ",- % Il -0.5
10N+ “12 800- , 7 //////& !
O 16 000 . o 10N < | I
70E 80E 90E -4 -3 -2 -1 0 1 2 3 4 5 _s

T0E SOE 90E
Fig: (a) Percentage change in aerosol optical depth (AOD) averaged for the lockdown period from
ECHAM6-HAMMOZ simulated AOD anomalies. (b) Cloud Effective Radius (ACER, pum), (c) relative
humidity (averaged for 1000-500 hPa, %), (d) Longwave Cloud Radiative Forcing (A LWCRF, %), (e) 2m
air temperature (AT2m, °C), (f) cloud cover (%), (g) anomalies in rainfall (mm day1).

We report that the reduction in anthropogenic emissions during the COVID-19
lockdown period has enhanced precipitation by 5-25% over India. It Is due to
changes In cloud microphysical properties: (1) an enhancement in cloud cover, a
reduction In aerosol-induced cloud invigoration and dynamical changes, (2) an
Increase In cloud cover associated with a reduction In cloud base height, (3) an
Increase In the effective radius of cloud particles led to an increase in cloud water

content, (4) an anomalous northward moisture transport over the Indian landmass.




