

Strategies to forecast extreme precipitation events from GFS and GEFS

Parameterization and Analyses group

¹Indian Institute of Tropical Meteorology, Pune, INDIA,

GFS and GEFS based forecast diagnostics for predicting extreme rainfall events

Extreme rainfall event on 17th June 2022

First column shows the percentile forecast from GFS T1534, the second and third column show the probability of exceeding the 90th and 95th percentile rainfall for the Day 1, 3 and 5 forecast valid for **17 June 2022.**

The Extreme Forecast Index (EFI, shaded) and Shift of Tails (SOT, contours) of rainfall for Day 1, 3, and 5 forecast valid for 16 June 2022. The EFI shows the likelihood of unusual (0-5-0.8) weather and very unusual (> 0.8) weather to occur. The SOT gives an indication of how extreme the event is with respect to the 99th quantile of the model climatology. These products are obtained from the GEFS forecast and its climatology (2013-2021

Model development activity in GFS

GFS T1534 with L128 hybrid levels

The higher number of vertical levels near the surface in L128 compared to L64 gives the reduced lowest model level height of around 20m than 45m in L64 in the GFS T1534 model. The model top level is increased from 0.27 hPa (~54 km) in L64 to 0.01 hPa (~80 km) in L128. CTRL: T1534 with L64 levels, EXPT: T1534 with L128 layers Model forecast run carried out for JJAS 2020 season

Improved parameterization constrained by observation

≻Most of the model represents the particle by an exponential fit of the form-

 $N(D) = N_0 e^{-\lambda D}$ where N₀ is the intercept, λ is the slope and D is the diameter of the particle.

 \succ The rates of several microphysical processes (e.g., vapor deposition and riming) are dependent on specification of N₀,

> The choice of N_0 remains problematic for microphysical scheme whether a constant value (Lin et al. 1983). or variable (Reisner et al. 1998). But most of the microphysical schemes assume N_0 is constant.

 \gg WSM6 also assume that rain, graupel and snow are exponential distribution with constant intercepts N₀.

>Analysis of CAIPEEX data shows that N₀ and λ are co-related (Patade et al. 2015;). \rightarrow Also it varies with temperature which is not consistent with assumption that N₀ is constant.

> There appears to be a nearly linear relation between $log(\lambda)$ and $log(N_0)$, i.e. of the form $log(N_0) = alpha + beta log(\lambda)$ whose slope beta is 2.033 (using 2011 CAIPEEX data)

 \succ The point is that, instead of assuming that N₀ is constant which is not consistent with the CAIPEEX analyses, we can instead replace this assumption with the relation N₀ = C $(\lambda)^{2.033}$, and then when the model produces a mixing ratio q, we can input it to the scheme and calculate the corresponding value of lambda using:

both the mesh showed the octahedral grid results in higher accuracy and substantially

vice versa.

reduced unphysical flow distortions accuracy mainly as the approach depends on the underlying mesh which defines the shape of the elementary volumes around which the computations are made (ECMWF New Letter, No. 146, 2015).

Rainfall bins in cm/day

a) Strike probability b) Intensity in terms of MSW (kts) for cyclone Mandous (Dec 2022) for IC: 2022120612

Probabilistic Prediction of Cyclones

Track error (km) b) Intensity error (kts) for cyclones during year 2020-2021

Extreme rainfall event on 22nd August 2022 GFS T1534 forecast valid for 22nd August Day-1 Day-2 Day-3 **Observed rainfall** (cmday⁻¹ 22nd Augus GFS T1534 TCO forecast valid for 22nd August Day-2 Day-1

Ensemble spread and RMSE (km) for cyclones during 2020-21