भारतीय उष्णदेशीय मौसम विज्ञान संस्थान
Indian Institute of Tropical Meteorology
पृथ्वी विज्ञान मंत्रालय, भारत सरकार का एक स्वायत्त संस्थान An Autonomous Institute of the Ministry of Earth Sciences, Govt. of India
Climate Variability and Data Assimilation Research
Objectives
Conduct basic research on Indian Summer Monsoon Rainfall (ISMR) variability and tele-connections.
Study the impact of long term ocean variability on decadal monsoon variations.
Investigate the processes associated with climate variability using observations and models.
Identifying predictors for monsoon variability using both observations and models.
Impact of different data assimilation methods/techniques on monsoon and ocean variability.
About Us
It gives us great pleasure to introduce our Group activates. Our mission is to provide a research environment dedicated to improve understanding about different spatial and temporal scale of global climate variability and linkages with Monsoon. The primary goal of this group is to improve our understanding of global climate by focusing on the ocean-atmosphere interactions. Along with ENSO-monsoon teleconnections, Non-ENSO-Monsoon teleconnections research from inter-annual to inter-decadal time scale are given higher priority in our group. At the same time, we are unwavering to improve the understanding of key processes that control ocean variability on different timescales. On the more specific way, it is important and essential for benchmarking of existing coupled general circulation models (CGCMs) with respect to monsoon variability. Do models represent mean monsoon and predict inter-annual variability of the monsoon rainfall well enough? Identifying the common problems in models might help in resolving the unresolved processes. So we propose to carry out model (atmosphere, ocean and coupled) experiments to understand and isolate the role of different climate modes on monsoon variability.
Project Details
Developmental Activities:
Identification and benchmarking of models on capturing the natural modes of climate variability and their relationship with Indian southwest monsoon variability.
Emergence of new climate drivers and predictors.
Recent Findings:
Indiansummer monsoon rainfall variability in response to differences in the decay phase of El Niño
In general the Indian summer monsoon (ISM) rainfall is near normal or excess during the El Niño decay phase. Nevertheless the impact of large variations in decaying El Niño on the ISM rainfall and circulation is not systematically examined. Based on the timing of El Niño decay with respect to boreal summer season, El Niño decay phases are classified into three types in this study using 142 years of Sea Surface Temperature (SST) data, which are as follows: (1) early-decay (ED; decay during spring), (2) mid-summer decay (MD; decay by mid-summer) and (3) no-decay (ND; no decay in summer). It is observed that ISM rainfall is above normal/excess during ED years, normal during MD years and below normal/deficit in ND years (Fig. 1), suggesting that the differences in El Niño decay phase display profound impact on the ISM rainfall. Tropical Indian Ocean (TIO) SST warming, induced by El Niño, decays rapidly before the second half of the monsoon season (August and September) in ED years, but persists up to the end of the season in MD years, whereas TIO warming maintained up to winter in ND case. Analysis reveals the existence of strong sub-seasonal ISM rainfall variations in the summer following El Niño years. During ED years, strong negative SST anomalies develop over the equatorial central-eastern Pacific by June and are apparent throughout the summer season accompanied by anomalous moisture divergence and high sea level pressure (SLP). The associated moisture convergence and low SLP over ISM region favour excess rainfall (mainly from July onwards). This circulation and rainfall anomalies are highly influenced by warm TIO SST and Pacific La Niña conditions in ED years. Convergence of southwesterlies from Arabian Sea and northeasterlies from Bay of Bengal leads to positive rainfall over most part of the Indian subcontinent from August onwards in MD years. ND years are characterized by negative rainfall anomaly spatial pattern and weaker circulation over India throughout the summer season, which are mainly due to persisting El Niño related warm SST anomalies over the Pacific. (Chowdary, J.S., Harsha, H.S., Gnanaseelan, C., Srinivas, G., Parekh, A., Pillai, P. and Naidu, C.V., (2016) Climate Dynamics. doi:10.1007/s00382-016-3233-1)
Figure 1. Composite of monthly and seasonal rainfall anomalies (IMD, mm/day) averaged over the Indian Subcontinent for El Niño Early Decay (ED), Mid-Summer Decay (MD) and No Decay (ND) years.
Combined influence of remote and local SST forcing on Indian Summer Monsoon Rainfall variability
The combined influence of tropical Indian Ocean (TIO) and Pacific Ocean (TPO) sea surface temperature (SST) anomalies on Indian summer monsoon rainfall (ISMR) variability is studied in the context of mid-1970s regime shift. The rainfall pattern on the various stages of monsoon during the developing and decaying summer of El Niño is emphasized. Analysis reveals that ISMR anomalies during El Niño developing summer in epoch-1 (1950–1979) are mainly driven by El Niño forcing throughout the season, whereas TIO SST exhibits only a passive influence (Fig. 2). On the other hand in epoch-2 (1980–2009) ISMR does not show any significant relation with Pacific during the onset phase of monsoon whereas withdrawal phase is strongly influenced by El Niño. Again the eastern Indian Ocean cooling and westward shift in northwest Pacific (NWP) cyclonic circulation during epoch-2 have strong positive influence on the rainfall over the central and eastern India during the matured phase of monsoon. ISMR in the El Niño decaying summer does not show any significant anomalies in epoch-1 as both Pacific and Indian Ocean warming dissipate by the summer. On the other hand in epoch-2 ISMR anomalies are significant and display strong variability throughout the season. In the onset phase of monsoon, central and east India experience strong negative precipitation anomalies due to westward extension of persistent NWP anticyclone (forced by persisting Indian Ocean warming). The persistent TIO warming induces positive precipitation anomalies in the withdrawal phase of monsoon by changing the atmospheric circulation and modulating the water vapour flux. Moisture budget analysis unravels the dominant processes responsible for the differences between the two epochs. The moisture convergence and moisture advection are very weak (strong) over Indian land mass during epoch-1 (epoch-2) in El Niño decaying summer. The changing moisture availability and convergence play important role in explaining the weakening of ENSO monsoon relation in the recent years. The local TIO SST forcing and NWP circulation are prominent forcing factors for the interannual variability of ISMR during epoch-2. (Chakravorty, S., Gnanaseelan, C. and Pillai, P.A. (2016) Clim Dyn 47: 2817. doi:10.1007/s00382-016-2999-5)
Figure 2: Lead lag correlation of NDJ(0/1) Niño 3.4 index with JJAS(0) rainfall anomalies (a, d), JJAS(1) rainfall anomalies (b, e) and simultaneous correlation of NIO SST anomalies with JJAS rainfall anomalies (c, f) for epoch-1 and epoch-2. The boxes in (f) are named (A) Southern box (74°E–78.5°E, 14°N–21°N), (B) Northern box (79°E–88.5°E, 20°N–25°N). The shaded region are significant above 95 % level
Arabian Sea SST evolution during spring to summer transition period and the associated processes in coupled climate models.
Many climate models have problems in simulating the sea surface temperature (SST) in the tropical Indian Ocean (TIO). The Coupled Model Inter-comparison Project Phase 5 (CMIP5) models, in general, underestimate SST over the entire TIO region. This study examines the SST evolution during spring to summer transition months (May and June) over the Arabian Sea (AS) region in the historical simulations of 13 CMIP5 models and the Climate Forecasting System coupled models CFSv1 and CFSv2. The annual cycle of SST shows that the summer monsoon cooling is not adequately captured by many models. Based on the state of June SST tendency, models have been divided in to three groups, the first group (G1) consists of models having stronger than observed cooling, second group (G2) considers models having closer to observed cooling and the third group (G3) includes models having lesser than observed cooling. Mixed layer heat budget analysis revealed that atmospheric flux is mainly responsible for unrealistic SST warming in most of the G3 models during June. The vertical mixing and horizontal advection contribute considerably to the SST cooling in summer (June) especially for G1 and G2 models. On the other hand, spring warming in all the models is consistently forced by the surface heat flux. It is also found that the monsoon low-level jet (LLJ) is not accurately represented in most of the models. The misrepresentation of LLJ causes bias in the oceanic processes leading to unrealistic SST evolution in many models. One way of LLJ affecting the oceanic processes is by modulating mixed layer depth (MLD). It is observed in general that the models with deeper MLD display strong SST cooling. The model deficiency in representing AS SST is speculated to be a major limiting factor in capturing the monsoon rainfall in the current coupled models. The proper simulation of AS SST is therefore very crucial for the accurate representation of Indian summer monsoon precipitation. (Ojha S., Gnanaseelan C., Chowdary J.S., Parekh A., Rahul S. (2016) International Journal of Climatology, 36, DOI:10.1002/joc.4511, 2541-2554)
Project Highlight
ENSO- Monsoon Teleconnections:
Impact of multi-year La Niña events on south Asian Summer rainfall is explored in the observations and CMIP5 models (RajDeepak et al. 2018). During the first year negative rainfall anomalies over most of the south Asian region except Bangladesh and Sundarbans are reported, whereas in the second year positive rainfall anomalies are noted over the south Asian monsoon region.
ISM rainfall is above normal/excess during ED years, normal during MD years and below normal/deficit in ND years, suggesting that the differences in El Niño decay phase display profound impact on the ISM rainfall [Chowdary et al. 2017].
LLJ variations in CFSv2 throughout the summer season are over dependent on ENSO unlike in the observations. This is mainly responsible for the model’s low skill in predicting LLJ and rainfall [Sagalgile et al. 2018].
NE monsoon rainfall variations over the Indian peninsular during El Nino years is primarily determined by SST gradient over the Indo-western Pacific and the number of systems formation and land fall [Singh et al. 2018].
Studied the ability of CFSv2 in capturing the strength of TBO signals and highlights the importance of improving the Indian Ocean SST teleconnections to south Asian summer monsoon rainfall in the model in order to enhance the predictability of TBO, which in turn would improve monsoon rainfall prediction [Gopinath et al. 2018].
Non-ENSO- Monsoon Teleconnections:
Importance of northwest Pacific circulation in predicting sub-seasonal/monthly summer monsoon precipitation over South Asia is highlighted using observations and coupled model [Chowdary et al. 2018].
Studied the impact of Pacific-Japan (PJ) pattern on ISM rainfall and its possible physical linkages through coupled and uncoupled perspectives [Srinivas et al. 2018a]. It is found that the northwestward propagating Rossby waves, in response to anomalous convection over the Maritime Continent corroborated by low level convergence in the southern flank of westward extended tropical NWP anticyclone, increase rainfall over the southern peninsular India.
Atlantic Niño significantly influences a dipole pattern of rainfall in the north–east and the north-western parts of India. The positive phase of the Atlantic Niño intensifies ITCZ, as a result of this local tropospheric warming over the equatorial east Atlantic and west Africa, owing to the enlargement of the upper-troposphere divergence. Resultant reduction in the Asian subtropical westerly Jetstream east of the Caspian Sea, owing to the reduction in the upper-troposphere divergence toward the Indian subcontinent and caused for above (below) normal north–east (south–west) monsoon rainfall [Yadav et al. 2018; RajDeepak et al. 2018].
Coupled Model oceanic biases:
The association between mean and inter-annual subsurface temperature bias over the equatorial Indian Ocean is investigated during boreal summer in CFSv2 hindcast [Srinivas et al. 2018b].
Maximum subsurface warming episodes over the EEIO are mainly associated with La Niña like forcing. Strong convergence of low level winds over the EEIO and Maritime continent enhanced the westerly wind bias over the EIO during maximum warming years.
Studied the biases in subsurface temperature variability in the TIO in CFSv2 [Kakatkar et al. 2018a].
Late decay of El Nino in CFSv2 is due to IOD evolution. North–south dipole in TIO subsurface temperature is captured by CFSv2 but it has rapid decay as compared to the observations. Misrepresentation of equatorial surface winds and Ekman transport as well as the Ekman pumping in the model have close association with the early weakening of the mode in CFSv2.
Ocean Variability:
El Niño and IOD-induced variations in zonal wind stress & wind stress curl mainly drive the inter-annual sea level variations in the Indian Ocean and are predominantly seen in the BoB, EEIO and the south-western TIO [Deepa et al. 2018a].
Contrasting patterns of decadal oscillation in sea level is found during the opposite phases of PDO especially in the thermocline ridge region of the Indian Ocean (TRIO; 50°E–80°E; 15°S–5°S) [Deepa et al. 2018b].
Epochal mean sea level rise is observed over the TRIO region during the cold phase of PDO (1958–1977), whereas epochal mean sea level fall is observed during the warm phase of PDO (1978–2002).
Spring Wyrtki jet affects the monsoon circulation and precipitation over south Asia & east Africa [Deshpande et al. 2017].
Studied the delayed impact of La Nina on TIO SST variations and associated physical mechanisms [Bhavani et al. 2017].
Studied the role of ocean dynamics in weakening the 2016 La Niña as compared to 1998 [Kakatkar et al. 2018b].
The hypothesis is successfully tested using ocean model experiments. The experiments reveal that, wind forcing and the associated wave dynamics, and discharge from the year 2015 onwards, are the primary factors responsible for weakening the 2016 La Niña.
Recent changes in the summer monsoon circulation increases the upper ocean heat content, effectively by enhancing downwelling processes and reducing southward heat transport in AS (Kad et al., 2018).
Data Assimilation
Data Assimilation Research:
Impact of temperature profile assimilation on simulation of Monsson circulation
Four dimensional Data Assimilation (FDDA) for simulation
The FDDA is a continuous dynamic data assimilation method that relaxes the model state toward observed state.
In the analysis, Newtonian relaxation term is added to the prognostic equation
T is a prognostic variable (i.e., temperature), M represents model which includes the physical processes, x represents the independent variables, and t is time. y◦is the observation vector, H is the observation operator that transforms or interpolates the model forecast variable to the observation variable and location, G is the nudging magnitude matrix, and Ws, Wtare the spatial and temporal nudging (or weighting) coefficients.
The nudging strength is specified to be 3 × 10−4 s−1 and ε denotes observation quality factor.
Each observation is ingested into the model at its observed time and location with proper space-time weights and the model spreads the information in time and space according to the model dynamics.
Tempeature Profile assimilation eliminate the asymmetric SLP bias resulted better monsoon circulation, reduced temperature bias in lower & mid-troposphere and simulated monsoon Indices better.
Fig. 1. Time series of monsoon indices (a) WYI (ms−1) (b) MHI (ms−1) (c) EIMRI (mmday−1) (d) WNPSMI (ms−1) and (e) EASMI (ms−1). WRFAIRS is based on assimilation experiments.
Raju, A., Parekh, A., Sreenivas, P., Chowdary, J.S. and Gnanaseelan, C., ‘Estimation of improvement in Indian summer monsoon circulation by assimilation of satellite retrieved temperature profiles in WRF model’, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 10.1109/JSTARS.2015.2410338, 1591-1600.
Raju A., Parekh A., Chowdary J.S., Gnanaseelan C., ‘Assessment of the Indian summer monsoon in the WRF regional climate model’, Climate Dynamics, 44, 2015, DOI:10.1007/s00382-014-2295-1, 3077-3100
Impact of temperature and moisture profile assimilation on Seasonal prediction of Indian summer monsoon
The WRF 3DVar data assimilation system [Skamarock et al., 2008] is used in this study. Two assimilation experiments are performed, one with conventional data and the other with both conventional and AIRS profiles. These experiments are in addition to the control run where no assimilation is performed.
Six-hourly assimilation cycles is performed with ±3 h time window for entire month of May. Model is initialized at 00:00 UTC, 1 June 2010, and gives the forecast for 1 June to 30 September 2010.
Conventional observations are assimilated, such as surface synoptic observations; Meteorological Aerodrome Report (METAR); buoy, ships, aircraft and SSMI wind speed and total perceptible water and satellite-observed cloud motion vectors from GTS during May 2010. It includes surface station reports as well as upper air observations.
In the third experiment, AIRS-retrieved T and Q profiles (more than 43% of observations) are assimilated along with the conventional data. level 2, version 6 AIRS atmospheric profiles are used. The T (Q) profiles are available at 28 (14) standard pressure levels between 1000 and 0.1 hPa (1000hPa to 50hPa).
Fig 2. Temporal variation of RMSE of the predicted (a–d) WVMR (g kg-1) and (e–h) precipitation (mm d-1) against ERAI/GPCP during monsoon 2010.
Assimilation of AIRS profiles has significant impact on predicting the seasonal mean monsoon characteristics such as tropospheric temperature, low-level moisture distribution, easterly wind shear, and precipitation.
The vertical structure of the RMSE is substantially affected by the assimilation of AIRS profiles, with smaller errors in temperature, humidity, and wind.
The consequent improved representation of moisture convergence in the boundary layer (deep convection as well) causes an increase in precipitation forecast skill.
This finding has large implications to the operational seasonal forecasting capabilities over the Indian subcontinent.
Raju A., Parekh A., Kumar Prashant, Gnanaseelan C., ‘Evaluation of the impact of AIRS profiles on prediction of Indian summer monsoon using WRF variational data assimilation system’, Journal of Geophysical Research, 2015, DOI:10.1002/2014JD023024, 1-20
Impact of temperature/moisture profile assimilation on predictability of MISO
Two separate simulations are carried out for 2003 to 2011. First simulation is forced by NCEP (CTRL), is forced apart from NCEP forcing, AIRS T & Q profiles are assimilated (ASSIM). Ten active and break cases are identified from thses simulations.
Three dimensional Temperature states are perturbed using twin perturbation method for active and break cases and carried out predictability tests.
Models is integrated for the 30 days from the peak of active/break in forecast mode for each of these perturb initial conditions of CTRL and ASSIM respectively. Hence, there are total 160 model runs of 30 days period are carried out.
Signal is defined as the variance within a sliding window of width (2 L + 1) in the experiments CTRL and ASSIM, where L is taken as 31 days to encompass a complete ISO event. Equation form of signal is
σ represents variance, S stands for the signal, τ is time window (i.e., -L to +L days); X represents the parameter from simulation, i stands number of active/break cases.
Noise is estimated as the variance among perturb cases and is determined by averaging over all ensembles and events (Equation 2).
Where N stands for the noise, τ is ranging 1 to L days of ISO events and j is the number of perturbation cases, Xp is geophysical parameter from predictability experiments.
Fig 3. Time evolution of signal & noise of rainfall (mmd−1) over MCR for active (a-b) and break (c-d) phases from CTRL (upper panel) and ASSIM (bottom panel). Vertical red lines are indicating predictability limit where signal and noise intersects each other.
Analysis reveals that the limit of predictability of low level u wind is improved by four(three) days during active(break) phase. Similarly, the predictability of upper level u wind(precipitation) is enhanced by four(two) and two(four) days respectively during active and break phases.
More realistic baroclinic response and better representation of vertical state of atmosphere associated with monsoon enhance the predictability of circulation and rainfall.
Parekh A., Raju A., Chowdary J.S., Gnanaseelan C., ‘Impact of satellite data assimilation on the predictability of monsoon intraseasonal oscillations in a regional model’, Remote Sensing Letters, 8, 2017, DOI:10.1080/2150704X.2017.1312614, 686-695.
Recent Publications
Mukhopadhyay S., Gnanaseelan C., Chowdary J.S., Parekh A., Mohapatra S., Prolonged La Niña events and the associated heat distribution in the Tropical Indian Ocean, Climate Dynamics, 58, May 2022, DOI:10.1007/s00382-021-06005-2, 2351–2369 (Impact Factor 4.375)
Nimya S.S., Sengupta S., Parekh A., Bhattacharya S.K., Pradhan R., Region-specific performances of isotope enabled general circulation models for Indian summer monsoon and the factors controlling isotope biases, Climate Dynamics, Online, April 2022, DOI:10.1007/s00382-022-06286-1, 1-21 (Impact Factor 4.375)
Patel J., Gnanaseelan C., Chowdary J.S., Parekh A., A quantile mapping approach-based bias correction in Coupled Model Intercomparison Project Phase 5 models for decadal temperature predictions over India, International Journal of Climatology, 42, March 2022, DOI:10.1002/joc.7376, 2455-2469 (Impact Factor 4.069)
Chowdary J.S., Vibhute A.S., Patekar P., Parekh A., Gnanaseelan C., Attada R., Meridional displacement of the Asian jet and its impact on Indian summer monsoon rainfall in observations and CFSv2 hindcast, Climate Dynamics, 58, February 2022, DOI:10.1007/s00382-021-05935-1, 811-829 (Impact Factor 4.375)
Halder S., Parekh A., Chowdary J.S., Gnanaseelan C., Dynamical and moist thermodynamical processes associated with Western Ghats rainfall decadal variability, npj Climate and Atmospheric Science, 5: 8, February 2022, DOI:10.1038/s41612-022-00232-y, 1-11 (Impact Factor 8.624)
Darshana P., Chowdary J.S., Parekh A., Gnanaseelan C., Relationship between the Indo-western Pacific Ocean capacitor mode and Indian summer monsoon rainfall in CMIP6 models, Climate Dynamics, Online, January 2022, DOI:10.1007/s00382-021-06133-9, 1-23 (Impact Factor 4.375)
Team
Project: Climate Variability and Data Assimilation Research
Project Director: Dr. C. Gnanaseelan, Scientist-G
Dr. C. Gnanaseelan Scientist-G
Ocean Modelling
seelan@tropmet.res.in
Phone No - +91-(0)20-25904271 View Profile
Dr. Anant Parekh Scientist-E
Air-sea interaction, IO variability
anant@tropmet.res.in
Phone No - +91-(0)20-25904264 View profile
Dr. J.S. Chowdary Scientist-E
Air-sea interactions, Monsoon Variability and Predictability
jasti@tropmet.res.in
Phone No - +91-(0)20-25904273 View profile
Shri. Prem Singh Scientist-E
Ocean Modelling and Simulation Studies
psg@tropmet.res.in
Phone No - +91-(0)20-25904279 View profile
Dr. Ramesh Kumar Yadav Scientist-E
Seasonal Forecasting
yadav@tropmet.res.in
Phone No - +91-(0)20-25904353 View profile
Dr. H.N.Singh Scientist-D
narendra[at]tropmet[dot]res[dot]in
Phone No - +91-(0)20-25904844
Smt. J. S. Deepa Scientist-D
deepa@tropmet.res.in
Phone No - +91-(0)20-25904230
Dr. Sumit Dandapat Project Scientist - C
sumit.dandapat@tropmet.res.in
Phone No - +91-(0)20-25904272
Sandeep Mahapatra Senior Research Fellow
sandeep.mohapatra@tropmet.res.in
Phone No - +91-(0)20-25904272
Darshana D Patekar Junior Research Fellow
darshana.jrf@tropmet.res.in
Phone No - +91-(0)20-25904279
Subrota Halder Junior Research Fellow
subrotahalder.jrf@tropmet.res.in
Phone No - +91-(0)20-25904272
Achievements
The importance of assimilating ARGO temperature and salinity profiles on monsoon hindcast is established. Ability of (IITM-GODAS) in representing the oceanic features and impact on Indian summer monsoon rainfall variability during 2014 and 2015 are reported.
Role of west-north Pacific circulation on sub-seasonal rainfall variability over Indian land mass as a part of Non-ENSO teleconnections is investigated.
Impact of differences in decay phase of El Nino on sub-seasonal ISM rainfall is documented systematically.
Mechanism for the inter-annual and decadal variability of Indian Ocean sea level is found through Ocean general circulation model (OGCM) experiments.
Origin of subsurface biases for TIO and limitation of representing the TBO in CFSv2 are identified.
Impact of assimilation of temperature and moisture profile on regional reanalysis and predictability of circulation and precipitation associated with MISO are found.
Role of change in monsoon circulation to the Arabian Sea warming trend during the summer is identify and associated ocean dynamics is explained through OGCM experiments.